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Point cyclic reduction is a very fast method for solving Helmholtz’s equation on a 
rectangle. However, it involves forming an approximation of the discretized equations, and by 
a fairly simple analysis we show conclusively that for the special case of Poisson’s equation 
on a square the solution computed by point cyclic reductions does not converge to the 
continuum solution as the gridsize goes to zero. 

1. INTRODUCTION 

Point cyclic reduction (PCR) is an interesting idea discovered by Detyna [2] and 
developed into a very fast N2-algorithm for obtaining an approximate solution to the 
five-point discretization of Helmholtz’s equation on a rectangle. It is the purpose of 
this paper to analyze the accuracy of the PCR method for the special case of 
Poisson’s equation on a square by looking at the Fourier components of the 
numerical solution. In fact, what we discover is that the solution computed (in exact 
arithmetic) by PCR does not converge to the continuum solution as the gridsize tends 
to zero. In other words there is a limit to the attainable accuracy regardless of how 
fine the grid is. For example, for the problem with solution sin x sin 3y the error 
cannot be reduced below 60%. 

Although this paper is self-contained, familiarity with the paper of Detyna [2] 
would be advantageous. 

2. DERIVATION OF POINT CYCLIC REDUCTION 

We consider Poisson’s equation 

0’4 =p 
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for 0 <x < YC and 0 < y < 71 with I$ specified on the boundary of this square. Let 
N = 2M and the gridsize h = Z/N. For n = 1, 2,4 ,..., N/2, N define grids 

G”+ = { (inh, jnh) / 0 < i, j < N/n}, 

Gnx = {(inh,jnh)/O~i,j~N/n;i+jeven). 

Thus the points of G”+ form squares of side nh and the points of G”’ form diamonds 
of side &&Jr. As in Detyna [2] we define the operator S”’ for a function on G”’ to 
be the summation of the function values at the four neighbouring meshpoints, and the 
similarly for S”‘. In other words, S”’ - 4 and Snx - 4 are, respectively, the five- 
point difference operator on G”+ and the rotated five-point difference operator on 
G ” 9 and consequently 

(dp2(S”+ - 4)=V2 + O((nhy) 

and 

(firzh)-2(S”x - 4) = Vt + Q((j/%h)“). 

The object is to solve 
hp2(S” - 4) 4’ =p 

for d,’ on the interior of G’ with 4’ given on the boundary of G ‘. The idea of PC 
is to reduce the set of equations from finer to coarser grids using the following pair of 
identities discovered by Detyna: 

S2"+-4=($"+ +4)(S"+-4)-2(S"'-4), 

s 2nL4=(pX +4)(pX-4)-2(S*n+ -4). (4) 

Let 

P TZ+ %tf (nh)-‘(Se+ - 4) #+, 

P nX '%f(finh)-2(&'"x -4)#+. 

If the values pt and px are known, the pair of identities (1) can be applied to 
compute p’+, p”’ recursively for n = 2,4, 8,..., N/2 according to 

P 2n+ = (1+ $n+)p+ -px (34 

on the interior of G2*+ and 

P 2nx = (1 + $=yX -p+ (3b) 

on the interior of G 2nx. Having obtained piv12 +, we can solve for 4’ on the interior 
point of GNi2+ from 



200 ROBERT D.SKEEL 

since SN12+#+ involves only values of 4’ on the boundary, which are known. (Or we 
could obtain 4’ from pNj2 x or use some linear combination of these two equations.) 
Then we can solve for 4’ on those interior points of GN’*’ from 

qj+ =$ (s”4”,$+ - (J’;“)2pN,4x), 

since SN14X#t involves only values of 4’ on GNj2+, which are known. And this can 
be continued until #’ is determined on all of G+. 

The values of p ’ are known to be p because of the way in which Q + is defined, but 
the values of px are not known. Detyna [2] suggests using the approximation 

$(s+ +4)p+ =px +O(h2). 

It is not entirely obvious why this approximation is used instead of pi, say, because 
both give an O(h2) approximation. An argument for this, based on Fourier analysis, 
is given in Section 4. 

3. STABILITY 

The 0(/z=) approximation error for the discrete Laplacian of $’ on GX does not 
seriously affect the computation if it is numerically stable. Hence we do a simple 
stability analysis for the somewhat special situation where an error 6 is introduced 
into the computation of px: 

p”+ Cfp+, 

P -x %fpX +a, 

and for n = 1, 2,4 ,..., N/4, jj2n ‘, p”” x are computed in exact arithmetic from pin+, px 
using recursion (3). We then look at the error sN12+, where 4’ + sN12+ is the value 
obtained from pNf2+ and the boundary values of 4’ according to (4). This analysis 
covers both the approximation error in g(St $4) pt N p ’ and the rounding error in 
this computation. We expect that the results of this analysis will also suggest to us 
the effects of subsequent roundoff errors. 

For n = 1, 2, 4 ,..., N/2 define E”+ to be the error in a solution obtained from p”“’ 
by solving the discrete Poisson equation on G” + ; that is, 

(n/z-=(S"+ -4)(#+ +&n+)=P""+ 

on the interior of G”’ with E”+ = 0 on the boundary of G”+. Similarly define .snx. 
By definition of p"+ we then have 

(nh)-2(S”+ - 4) &“+ =p”“+ -pn+. (5) 

Clearly Eqs. (3a) and (3b) are satisfied by p”’ -p"+ and p”” - pnX, respectively; 
and so substituting (5) into these equations we get an equation in terms of s2”+, snt, 
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and &"X and an equation in terms of .s2nX, E:“, and s2*+> which, using identify ( 
simplify to 

(S 2n+ - 4)(E2n+ - Bnx) = - (p+ + 4)(~n+ - 4)(Enx - ,y+)? 

(S *OX - 4)(s2nx - s2n+) = - (px + 4)(snx - 4))(s*n~ _ En”). ccl 

Finally we have 
E > +x0 

(@h)-“(SX - 4) EX = 6. 
(7) 

Equation (6) is the key to a relatively easy stability analysis. 
Let us look at a typical Fourier component of 6, and so let 

6(x, y) = 8 sin px sin qy 

for x, y on the mesh Gt where 1 < p, q < N - 1. We restrict both p and q to be od 
for otherwise, 6 vanishes at the interior point (7r/2, $2) of G”“‘.‘. For scalar 
multiples of sinpx sin qy we have 

s *+ .I. 
and 

=(2cospnh+2cOSqnh)~~~ 

s nx . . . = (4 cos pnh cm qnh) . ~. . 

Substituting into (6) and (7), we get 

et =o, 

X- h2 
F 

- - sin* ph + sin’ qh t (cm ph - cos qh)2 
6, 

(cos pnh - cos qni+ 
sin* pnh + sin’ qnh 

(Enx - En+), bSa> 

E2nX -E*nt =- 2+ 
2 

cot2 pnh + cot2 qnh (E 
2nt -E"X 

>* 

Clearly the multiplicative factors in (8a) and (8b) are each no less than 2 in absolute 
value. It is not difficult to show then that for E x # 0 

& FIX -En+ 

EX > n*, 
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and hence for any ax 
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(&N/2+ I&h-’ I&X I. (9) 

With p = 1 and q = 1 we have that ]sx I> 1 (61 and in this case the error 6 is 
amplified by a factor like hw2. 

Detyna [2] gives an informal analytic argument suggesting the amplification factor 
is no worse than hP2 and gives empirical evidence suggesting a factor of h-i.’ 
(1.7 r log,(13.17/4)). H ere we have shown conclusively that the factor is at least 
h-2, and in the Appendix we show rigorously that it is no worse than this. 

4. CONVERGENCE 

We can use the 6 in the stability analysis to represent the error in the approx- 
imation we are using for p x : 

a= [l +a(S+ -4)]p+ --px, (10) 

where a = d. In order to see why a = Q is the best choice, we will for the moment 
allow a to be any real number. Combining Eqs. (2), (7), and (10) we have 

(Sx -4)~~ =2{[1 +a@+ -4)](S+-4)-(SX-4)}$+. 

Assuming now that #(x, u) = sin px sin qy, we have from h-‘(S+ - 4) #’ = V’# 
that 

#+ = W/‘42 + WW 4 
sin’ ph/2 + sin’ qh/2 

and 

BX=-$ (cos ph - cos qh)2 + (8a - 1)(2 - cos ph - cos qh)’ 
(cos ph - cos qh)’ + sin* ph + sin2 qh #‘a 

We note that for p = q = N - 1 this second factor is 4(1 - 8a) h -2 + O(l), which is 
very large unless a = l/8. With this choice for a the approximation error in (10) 
vanishes for p = q and is less than 50% in the worst case when lp - q) = N - 2. 

With a = l/8 we look at the convergence of this discretization. For p and q fixed 
as h-10 we have 

,&+” (P2-q2)* 
8 p2+q2 

+ O(h4) 
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and so from (9) 

I& N’2+ I>$ ‘$;“6!’ + Q(h2). 

For example, with p = 1 and q = 3 we have / eNI’+ / > rc*/15 + 0(/r’) and so the 
solution at the centre point is in error by at least 60% for small (enough) h. 

The choice #(x, y) = $x(x - 1) y(y - 1) + $x*(x’ - 1) y*(y* - I), 0 < x, y < I, 
tested numerically by Detyna, yields a maximum relative error of less than 0.1% for 
N= 128. This is quite remarkable, especially since the approximation error 

does not seem particularly small in this case. 
The analysis can be extended to show that the approximation based on obtaining 

9’ at the centre point from (fiNh/2)-2](S~‘2x - 4) 4’ = pn’i2x is not convergent. 
Nonetheless it is still conceivable that convergence is possible by taking some linear 
combination (not depending on p and q) of the equations involving pN12+ and psi” ~ 

Finally, we note that it does not seem possible to get convergence by defining p+ 
and px in some other (computationally efficient) way in terms of p. 

5. CONCLUSION 

We have shown that point cyclic reduction is unsuitable for Poisson’s equation. It 
may be possible to salvage the PCR idea but this remains to be demonstrated. The 
only known N*-algorithms that are numerically stable are based on an iterative 
method, in particular, the multigrid method [I]. 

Also, the practical value of doing a fairly detailed error analysis has been 
illustrated. 

APPENDIX 

ere we show how the analysis of Detyna [2] can be enhanced in order to 
establish conclusively that the error growth factor is no worse than Q(h-‘). Let 

and 
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and 

[ 

6 2nt 

6 2nx 
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1 + $P+ --I 6 nt 

-1 - $p+ 2+$c3X 11 I gnx * 

With 6 equal to a scalar multiple of sin px sin qy, 1 < p, q <N - 1, we have 
S”+ = 2(< + r) and S”’ - 
matrix above becomes 

-4&l, where r = cos pnh and q =cos qnh, and so the 

/l(n) = 
[ 

1 +gr+q) -1 
-l-$(5+r) 1 2+& * 

The spectral radius of this matrix is maximized for < = q = 1 only, and the matrices 
of right and left eigenvectors, respectively, for <= y = I are 

T= 
1 1 [ 1 1 -2 

and 

For general r and q we have that 

T-‘A’“‘T= 
[ 

$+$(r+t>(q+$) ;-~(~-~)(~-~) 
- 3<r;- l)(r- 1) ;+%(r+f>(q+;> ’ I 

and the infinity norm of this matrix is 

Furthermore 

and so 

Finally we get 

#‘/21 

[ I 
&V/2 x 

= T(T-1A(N/4)T) . . . (T-‘A(~)T) ~-1 

L I 

i , 

ldN”+ 1 <(I 1st row of TI/, . q”-’ . IF1 L x 
<;h-2l6). 

I&N’2+l = 1-f (;hj2 a”‘? / <$h-2 /a/. 
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